

COURSE OUTLINE

http://staff.hu.edu.jo/ribadran

Prof. Rashad Badran

Lectures as Videos on YouTube:

https://www.youtube.com/playlist?list=PLTXylkc9TfJBgmsmlwufXoObNmc29yhRG

The Hashemite University Faculty of Science Department of Physics Course Description

Department: Physics				
Year: 2020/2021		Semester: Summer		
Course Information				
Course Title	General Physics (I)			
Course Number	170108136			
Course Credits	Three credit hours			
Prerequisite	None			
Course Duration	7.5-weeks (Fo	ur sessions a week each 75 min)		

Instructor	Office	Time of Lectures		
Prof. Rashad Badra	h Physics Building # 204	Sun., Mon., Tue., & Wed. 11:00-12:15		
	Textboo	k		
Title	Physics for Scientists and E	ngineers with Modern Physics.		
Authors	Raymond A. Serway and John W. Jewett			
Publisher	Thomson, BROOKS/COLE			
Year	2014			
Edition	9 th edition			

References

(1) "Fundamentals of Physics" by David Halliday, Robert Resnick, and Jearl Walker, 5th Edition, John Wiley and Sons, 1995.

(2) "University Physics" by F. Sears, M. Zemansky, and H. Young, 7th Edition, Addison Wesley Publishing Company, 1987.

Evaluation Policy				
Assessment Type	Expected Date	Weight		
Midterm Exam	Third week after start of semester	40%		
Activities	Will be assigned to students on due time	10%		
Final Exam	To be announced by the Dean's office	50%		
	Course Objectives			

- 1. Develop a clear understanding of basic physical concepts in mechanics as an integral part of the student's overall education.
- 2. Develop the ability to deal with the physical concepts quantitatively (numerically).
- 3. Form a good foundation for follow-up courses in mathematics, physics and chemistry.
- 4. Demonstrate the applications of modern methods to a variety of problems in physics.
- 5. Develop the learning skills of the student in using computers as educational tools, problem solving and demonstration.

Specific Outcomes of Instruction (Course Learning Outcomes, CLO's):

After completing the course, the student will be able to:

- □ distinguish between vectors and scalars and how to deal with vectors correctly.
- understand one and two dimensional motion.
- □ apply Newton's laws for systems in rectilinear motion.
- apply the conservation theorems and understand their importance in solving physical problems.
- **D** apply Newton's laws for systems in circular motion and in rotational motion.
- □ Understand the linear momentum and its applications.

Student Learning Outcomes (SLO's) Addressed by the Course:

#	Learning Outcomes Description	Contribution	
	Applied and Natural Sciences Student Outcomes		
(a)	an ability to apply knowledge of mathematics, science, and applied sciences	н	
(b)	an ability to design and conduct experiments, as well as to analyze and interpret data		
(c)	an ability to formulate or design a system, process or program to meet desired needs		
(d)	an ability to function on multidisciplinary teams		
(e)	an ability to identify and solve applied sciences problems	L	
(f)	an understanding of professional and ethical responsibility		
(g)	an ability to communicate effectively		
(h)	the broad education necessary to understand the impact of solutions in a global and societal context		
(i)	a recognition of the need for, and an ability to engage in life-long learning		
(j)	a knowledge of contemporary issues		
(k)	an ability to use the techniques, skills, and modern scientific and technical tools necessary for professional practice.	Μ	
	H = High, M = Medium, L = Low		

1	4	-	6	
(1	ž		
	P			1
C.	أشهيئ	ب ال	Rold	5
3	AL AND	Pinite 1	Univer	

Course Schedule (tentative)

	Topics	Chapter	Sections	Suggested	Problems تعلوم - الجامعة الهاشمية
Week #		in Text		8 th Edition	9 th Edition
1	Physics and Measurements	One	1.1,1.3	9, 10, 13	11, 12, 15
2&3	Motion in One Dimension	Two	2.1-2.7	1, 3, 8, 17, 21, 28, 43, 60	1, 3, 9, 21, 29, 38, 53, 74
4	Vectors	Three	3.1-3.4	2, 8, 14, 25, 37	2, 12, 20, 31, 37
5&6	Motion in Two Dimensions	Four	4.1- 4.5	1, 5, 7, 9, 15, 18, 32, 50	1, 7, 9, 15, 21, 22, 40, 60
6	First Exam; Chapters: 1-4				
6&7	The Laws of Motion	Five	5.1-5.8	7, 13, 20, 28, 30, 41, 47, 48	11, 19, 28, 40, 42, 61, 65, 66
8	Circular Motion	Six	6.1 & 6.2	1, 6, 14, 18, 54	1, 6, 14, 18, 54
9&10	Energy of a System	Seven	7.2-7.8	1, 9, 11, 15, 22, 31, 39, 41, 45, 49	5, 9, 11, 15, 20, 33, 39, 41, 45, 49
11&12	Conservation of Energy	Eight	8.1-8.5	5, 7, 15, 19, 22, 23, 29	5, 7, 15, 19, 22, 23, 29
11	Second Exam; Chapters: 5-8				
13	Linear Momentum	Nine	9.1-9.5	1, 4, 6, 11, 21, 26, 29, 34	3, 5, 6, 13, 23, 30, 37, 44
14	Final Exam; Chapters: 1-9				